SPCQuote: From Smart Client to Distributed Processing

Karen Hope
The St. Paul Companies
5801 Smith Ave.
Baltimore, MD 21209 USA
011.410.205.1194

Karen.Hope@stpaul.com

ABSTRACT

This paper describes the evolution of St. Paul Fire & Marine’s
commercial insurance policy writing system from a smart-client
Smalltalk application to an n-tier distributed service model
supported by two Smalltalk dialects, Java serviets running
within Websphere, and XML as a means of data abstraction.

1. Background

The Business Foundation System (BFS), deployed in 1996, was
designed to support the complete workflow of commercial
insurance policy writing for United States Fidelity & Guarantee
(USF&G, now part of The St. Paul). It began as a smart-client
model based on a VisualSmalltalk Enterprise (VSE) client
application communicating to a Sybase System 10 database and
initially supported 120 employees in 3 locations. The VSE client
application was designed based on object-oriented principles
that yielded well-encapsulated subsystems. Behaviors relating to
business objects (i.e., aPolicy, aCoverage, aVehicle), user
interface, persistence, printing, statistical reporting, and policy
rating, though residing in the same Smalltalk image, were
conceptually independent of one another. The ability to alter
one subsystem without impacting another has greatly facilitated
changes within BFS, and since its deployment, the system has
undergone over 30 subsequent releases to increase and improve
functionality. The most revolutionary of these was SPCQuote.
Released in April, 2000, SPCQuote significantly changed both
the system architecture and its development environment while
satisfying disparate business objectives concerning application
distribution, scalability, and maintainability.

2. Challenges

The initial BFS archi e very fully met its t

objectives and its object-principled design proved efficient and

dynamic through subsequent re-architectures and product
enhancements. Nevertheless, by 1998, BFS was facing many
challenges. Notably:

e The success of BFS encouraged business to increase the
number of insurance products offered through the
application, expanding the size of the application
executable. This growth inconvenienced our users by
requiring them to purchase and install more memory for
their client machines.

John Finegan
The St. Paul Companies
5801 Smith Ave.
Baltimore, MD 21209 USA
011.410.205.5857

John.Finegan@stpaul.com

e Our pool of users was changing. No longer supporting just
internal employees at three locations, BFS’ policy quoting
capability was provided to extemal insurance agents at
many locations via either CD-ROM or a Citrix/Internet
interface. Neither approach was economical. New CD-
ROMs needed to be created and distributed to more than
1,000 agents whenever the application or reference data
changed, and each Citrix server was expensive to maintain
and could only support 8 concurrent users.

e ParcPlace-Digitalk, supplier of our VSE-Smalltalk
development tool, announced it was discontinuing further
development of and phasing out support for said tool.

e When USF&G merged with The St. Paul, the combined
company found itself with redundant systems and set out to
cut costs. BFS needed to prove its value with regard to
scalability, adaptability, and cost-effectiveness.

3. Solution - SPCQuote

SPCQuote originated from an effort to address the concern of
discontinued product support by porting from VSE to IBM’s
VisualAge Smalltalk (VAST). With the aid of Synchrony
Systems and their SMT product, we performed an internal
proof-of-concept that successfully migrated one component of
our application from VSE to VAST. Pleased by the quality of
the migration but concemned by indications that porting the
entire application, an effort providing no additional system
capabilities, would require a daunting 12,000 person-hours, we
began considering other business needs that could sensibly be
combined with a port. This culminated in a very ambitious re-
architecture plan that would:

e Port most but not all of the VSE code To VA. The greatest
encumbrance in porting the entire application from VSE to
VAST was mapping custom VSE Ul widgets to VAST
graphical components; porting all other components of the
application was comparatively simple.

e Replace both the CD-ROM and Citrix BFS interfaces used
by external insurance agents with an affordably scalable
web-based interface.

e Continue efforts to reduce BFS’ client footprint size by
splitting the client/server application into separate services.

e Take a bold step in anticipating the future of systems at The
St. Paul by designing and moving to production the
company’s first component-based application.

4. Implementation Features

* Reuse: Two system components, one providing domain
model update processing (Domain) and another providing
business rules evaluation (Edits) and policy premium
generation (Rating), were ported from VSE to VAST in
order to operate in an IBM Server Smalltatk Environment.
This allows (a) the existing UI and VSE domain to support
full policy lifecycle processing for internal users, (b) the
ported domain behavior running in a Server Smalltalk
Environment to support a new browser interface for
external on-line quoting, and (c) the ported Edit and Rating
behavior running in a Server Smalltalk environment to
support both the browser domain as well as the VSE
domain. This meant not only that the VSE application
could be stripped of the edit and rating components, but
also that, by keeping the domain logic supporting the
browser interface in Smalltalk (ported from VSE to
VAST), we avoided re-implementing five years’
accumulated behavior.

o Java Serviets for Web-based Client Interface: Servlets
running within IBM’s Websphere provide extensive
framework processing. An HTML-based browser interface
should allow us to be able to switch to a graphically richer
toolset if our requirements eventually so demand.

e Distributed Object Communication: The client
application was spread across multiple configurable tiers.
Edits and rating, once isolated, provide a reusable
comerstone for disparate input sources. A black-box
framework uses RMI (Remote Method Invocation) to
enable inter-object communication between Java and
Smalltalk. Other communications strategies, such as
CORBA, could alternatively be impiemented in this layer
without affecting client or service behavior.

® Separation of data and representation: Back-end services
were modified to interpret XML as their data source,
ensuring input neutrality to enable the services for requests
from the browser as well as from the original VSE client
application.

Figure 1: Current BFS/SPCQuote architecture

5. Direct Benefits

Business benefits to Commercial Lines policy writing due to
deployment of SPCQuote in April, 2000 were immediate. Over
7,500 agents now have direct access to real-time quoting
capabilities with The St. Paul companies. Agency quotes

originating from web-based SPCQuote now account for 70% of
total quotes booked and billed. Quotes originating from CITRIX
have been reduced from 40% to 5%, positioning the servers for
retirement. Software distribution tasks have also been reduced,
saving $400,000 annually.

6. Recommendations

SPCQuote challenged the organization. Learning curves for new
software components as well as development of deployment
techniques for the new component-based architecture were
embraced simultaneously. The project, including training, was
completed in only 15 months. Any organization attempting
such an ambitious undertaking could benefit from the following
recommendations:

e Re-architect to the appropriate tool. For SPCQuote,
despite the obvious attraction of porting Smalltatk-to-
Smalltalk, the operational limitations imposed by Server
Smalltalk greatly diminished the potential benefits of a
distributed architecture. As a consequence, we are now
faced with porting these same services to a more scalable
environment, that is, Java.

¢ Expect to be unprepared. Realize that with a distributed
architecture, end-to-end performance metrics are not
available until every component is successfully integrated.
This limits the possibility for major design revisions during
the initial implementation iteration.

e Ready the org for the arch e. In addition

to design and wuser d ion, dc ion of
implementation, deployment, and debugging techniques
should be recognized as deliverables critical to the
continued evolution of the application. The technical
infrastructure, including production support, and system
visibility and control measures must be ready at initial
deployment time. Accept that future project planning must
account for the increased complexity of testing and
integration.

e Sell the new system to the users. We found ourselves in
the unenviable position of shouldering the costs of cutting-
edge technology to replace an existing entrenched
application. It was not easy for our users to appreciate our
strategic vision when their familiar application was
replaced with a less predictable, server-based entity

7. The Future of BFS

Originally conceived as a line-for-line dialect translation yet
executed as total system rejuvenation, SPCQuote represents The
St. Paul’s most significant advancements in systems
architecture. Changes introduced by SPCQuote provide us a
viable foundation upon which to build the next generation e-
commerce application. Currently, we are planning to replace
Smalltalk altogether with a more progressive development
language and to provide full-policy lifecycle support over the
Internet. An effort is also underway to provide BFS quoting
through third party interfaces using industry standard ACORD
XML. Further, a web-based end-consumer model has been
piloted and will be in full production by EOY, 2001.

