FOUNDATION

A Model for Concurrent Project Development

Kazren Hope
karen_hope @usfe.com

Peter Symon

peter_symon]@usfg.com

United States Fidelity and Guaranty Company
Baltimore, MD

ABSTRACT

Large software development teams require well-
defined development processes. The problems
encountered by large teams are compounded
exponentially when an organization consists of
many such large teams simultaneously co-
developing new software functionality. At
USF&G, we have developed a model that
enables our project development teams o
implement diverse projects within a single
deployment environment. Despite corresponding
complexity introdeced during project
integration, our model has enabled us to
successfully advance the functionality of our
system in a development cycle of extremely
short duration. This paper discusses the
implementation of the model for concurremt
project development in a Smalltalk application
known as Foundation.

ABOUT US

The Application

United States Fidelity and Guaranty Company
(USF&G), founded in Baltimore in 1896, is one
of the nation’s largest property/casualty msurers.
It is the principal operating subsidiary of
USF&G Corporation which has $14.5 billion in
assets. The Foundation system is used to issue
small commercial business insurance policies in
46 states and is cuomently deployed in three
Centers for Agency Services (CAS), branch
offices, and certain Agencies over the Intemnet.
Now on its 19th release, the application was
first used to 1ssue policies on January 4, 1996,
and currently manages over 53,000 policies

totaling policy premiums over 100 million
dollars. Throughout 1996 the project worked
against a monthly release cycle schedule, but
has now slowed to a six-week period between
releases.

Architecture

Foundation was developed using ObjectShare’s
Smalltalk VSE 3.11a' rusning on the Windows
‘95 operating system for developer and
deployment workstations. It consists of over
1,000 Smalltalk classes. The user interface is
implemented using PARTS as a screen painting
tool with internally developed frameworks
managing Ul-to-domain communication. The
application manages persistence via the
TOPLink database access mechanism through
ODBC to Sybase System 11 database. The
Sybase database also communicates with some
of our legacy systems using Remote Stored
Procedures. For the Smalltalk development
environment, we rely heavily upon PVCS
facilities built into TeamV, though we believe
that the processes we use to aid in application
development could easily be used with other
source management systems.

Definitions

package - in TeamV, a grouping of definitions:
class, global, instance variable or class
variable. Closely corresponds to an
application in Envy.

! Visual Smalltalk Enterprise, TeanvV, and PARTS are
trademarks of ObjectShare, Inc. Windows 95 is a
trademark of Microsoft. PVCS is a trademark of
Intersolv. TOPLink is a trademark of The Object People.
Sybase is a trademark of Sybase Inc.

trunk commit - original linear sequence of
package commits; in Team/V commonly
represented as a single ordinal number after
the decimal point, i.c., 0.21, 0.22, 3 46, 3.47.

branch - & package commit version label
derivative of another commit but not in
linear sequence, i.e., 0.21.0.1 branches from
0.21; 1.346.9.3 branches from 1.346.

project - programming initiative consisting of
the following phases: project scope,
requirements, design, construction, testing,
and integration. Usually independent of
other ongoing projects.

release - executable Smalltalk image, database
components, and support files which
together represent a new revision of the
Policy Writing System deployed to users.

SCM - Source Change Management. Set of
guidelines, rules and procedures that
determine the optimal sequence of activities
to ensure timely release of high-quality
code.

THE DEVELOPMENT PROCESS

Background

In 1996, when developing our first release,
Foundation used a class-ownership model.
Every Smalltalk class was designed and
developed by a static team, and all
modifications to a class were performed by the
same group of developers. Because of our
business partner’s requirement to implement as
much of our business as quickly as possible in
Foundation®, we found we could no longer use
that model. Instead, we have taken our
development team and broken it into dynamic
feature-based project teams. Major areas of
enhancement are treated as individual projects,
each with its own life-cycle. Class ownership is
then assigned within each project team. Thus,

* From late 1996 unil mid-1997, the Foundation
application generated an increase of 400% in premium
and a 300% increase in policies in force. Consequenty,
USF&G is targeting having 80% of our commercial
business supported by the Foundation system by end of
year 1998.

there can be several developers simultaneousty
modifying the same Smalltalk classes to satisfy
requirements for independent projects.

During 1996 and 1997, Foundation averaged
6.7 projects ongoing in any given week. Projects
converge during the Integration phase of the
Release process.

Release process

Project priorities are set by business and
information systems management as part of bi-
weekly status meetings. These priorities are
further validated against corperate strategy on a
monthly basis. Once prioritized, projects
expected to have concluded project system
testing can be bound to a particular Release.
Releases usually are timed every 4-6 weeks.
Any given Release will likely include rofl-out of
many independent projects. Any given project
can span multiple Releases.

These conditions introduce sufficient
complexity to application development to
require a set of processes to facilitate project
integration activity. Known collectively as
SCM, the processes evolve and adapt to our
application’s changing needs.

PROBLEM STATEMENT

Consider, for each Release:

= only one set of repositories and packages
(class definitions) exist; nevertheless,

= two programmers working on different
projects {(perhaps destined for different
Releases) may be modifying behavior of the
same class,

m there is only one production database

= independent projects may be modifying the
same table structires or stored procedures.

m only one image is released to the users;
consequently,

= the “correct” revisions of each package must
be included in the release to ensure that only
the aggregation of functionality implied by

the designated projects is included in that
release image.

Given the complexity of the development
environment, it follows that most risk is
associated with the Project Integration phase of
the Release cycle. Until each project
successfully integrates with all others, the full
snite of functionality required by a given release
is unrealized. Mitigating factors include:

m formal institution of a Design Review board.

m peer review of all Smallialk code before
acceptance into any Integration build.

= documentation of impacted components
(packages/classes, stored procedures,
support files, database tables) via a
Component Conflict database.

SCM PROCESSES

Project Life-Cycle

Project life-cycle follows a traditional model:

Scope

Requirements

Design

Construction

Unit Testing

Integration

Integration Testing

User Acceptance Testing
Deployment.

" % & 5 ° & + @

Project development proceeds in a typical
fashion until the onset of Construction. At that
point, the project is assigned a development
branch, and a copy of the “baseline” database is
made for exclusive use by the project.
Construction occurs independent of all other
project and Telease activity; Unit Testing is
performed within the project’s own database.

However, during Integration, Smalltalk code is
merged with other projects’ code, and each
integrating project’s database is also merged in
an arca known as database integration. Once
Integration Testing is complete, an executable
image is built for system testing and deployed in
a laboratory environment mirroring the rantime
environment. Finally, once the image passes

User Acceptance Testing, it is staged for and
delivered to the field.

Rules for project development

» Each project has its own database

= Each project is assigned a branch numbet.
All code development must be committed to
the public repositories on this branch
number.

m The project’s code modifications to a
particular Smalltalk package should
optimally branch (on the designated branch
number) from the latest trunk release of that
package.

m At the conclusion of Design, the Component
Conflict database must be updated. Each
affected package, database table, and stored
procedure must be annotated with a
description of the nature of the change the
project will introduce.

Rules for Release

At the time of code cut-off, all projects
scheduled for the release must have successfully
complered project system testing. One of the
projects is chosen as the base of the release and
its branch is known as the integration branch.
This selection is based on several criteria such
as the magnitude of the project’s changes, the
business functionality implemented by the
project, the risk associated with the project’s
changes and the complexity of backing the
project out of the release. Once the integration
order is determined, the projects integrate onto
the integration branch, one project at a time.

In this example, there are three independent
projects in active construction. Project 1
{branch 6) and project 2 {branch 12) are
scheduled to be included in the current release.
Project 3 (branch 4) is scheduled for a future
release. The diagrams illustrate activity for one
particular package. All three projects have
made modifications to the same package, and all
three branched from the same trunk revision of
the package. Though the diagrams only reflect
activity within a single package, gach
Foundation project modifies an average of 115

packages. Integration must occur for each of
these packages.

CODE CUTOFF FOR RELEASE 1.1

Project 1 Project 3
Branch & Branch 4
Rolease 1.t Ralsass 1.2
0863 0.0.4.2

In this example, project 1 must integrate its
changes onto branch 12 — the integration
branch.

RELEASE 1.1 ENTERS INTEGRATION

Preject 3

During Integration, each subsequent project
merges with the most recent revision of the
integration branch. Thus, project 1 merges their
code into the integration project’s (project 2)
branch. If project 3 was part of this release, it
must merge with projects 1 and 2 on the
integration branch; and so on.

RELEASE 1.1 ENTERS SI
Promote to Trunk _ - s 0.9

£ S

Prolect 1 Project 3

At the satisfactory comclusion of integration
testing, an executable image is built. The image
is deployed into the SIIQA lab (closely
mirroring the field environment). The Release

is said to be in SI. At this point, the project
development teams work closely with the
Release team to perform regression testing and
to validate project functionality.

Packages modified by the Release are now
committed from the integration branch as new
trunk fevisions. After the satisfactory
conclusion of SI testing, the image is promoted
to IQA. The business partners may then begin
rigorous regression testing and validation of
new functionality.

Any defects detected during SI or IQA are
always committed to the “1” branch.

RELEASE 1.1 GOES INTO PRODUCTION

0.8.12
SIGA Defects

031 0.9
.

At the satisfactory conclusion of IQA testing,
the image is promoted to production and
deployed to field operations. All SIQA defects
will be committed from the “1” branch back to
the trunk.

RELEASE 1.1 POST-PRODUCTION
Promote to Trumk, -~ = = ™ m 1041

‘ 08

Merge {0.8.44 & 0.10)

At this point, every project in active
construction must merge the changes from the

refease back to their project branch and commit
a new branch (on the same branch number) from
the most recent trunk commit. Using a
numbering convention to document the
integration, we can readily tell with which trank
cornmit the branch is integrated.

Tn this example, project 3 integrates its changes
from 0.84.6 with 0.10, yielding a 0.104.1
commit.

CONCLUSION

In a perfect world, software development is a
continmum. Class owners are involved from
analysis through deployment and gain greater
expertise and understanding with each new
demand placed on their objects. Unfortunately,
the constant demand for increased functionality
necessitated a different model for our
development teams, one in which objects are
subject to non-linear progression. Just as.
divergent development threads are spun, they
must ultimately be woven together into a single,
coherent unified vision for implementation. At
USF&G, the Foundation project has developed
an SCM mode! critical to the continued success
of the Policy Writing System in the featre-
based team development environment.

